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Expressing Eqs. (7) and (8) in the polar coordinates defined in Fig. 1
gives

v cos ty = v' cos ty' — vs

v sin ̂  cos 0 = i/ sin ty' cos <j>'

(9)

(10)

The azimuthal angles are unchanged by the coordinate transforma-
tion, so 0 = 0'. Therefore Eq. (10) reduces to,

v sin T/T = v' sin ty' (H)

To solve for V(^', v') square both Eqs. (9) and (11), add the
results and take the square root to obtain

v = (v'2 + v2
s - 2v'vs cos V') 5 (12)

To solve for V'W, u), note that Eq. (12) squared is a quadratic
equation for v' with the solution

i/ = vs cos tyf + -^/v2 cos2 i/s' — (v2, — v2) (13)

To solve for ̂ W, v'), divide Eq. (9) by v and take the arccosine
to get

_! /1/COSl/r-uA
= COS * I ————-———— I

V v ) (14)

where the v in the denominator is given by Eq. (12).
Finally, the Jacobian is solved for by substituting Eqs. (14) and

(12) into Eq. (6) to obtain

_
v (15)

With the above results, Eq. (5) can be further simplified. Replace
the Jacobian with Eq.,(15) and h(ty) with (sin VO/2 and substitute
Eq. (11) into the result to obtain

3it fV,vm

«/w.iw

(16)

Equation (16) normalized by FspA At is the velocity focusing
factor in orbiting spacecraft coordinates. That factor was numeri-
cally integrated and compared with Kessler's equation for the ve-
locity focusing factor in stationary spacecraft coordinates, which
is repeated as Eq. (2) in this paper. Agreement was obtained to
within the tolerance set for the numerical integrations (six signif-
icant figures for the smallest tolerance calculated), confirming the
accuracy of the coordinate transformations and the Jacobian derived
here.

The mean number of impacts onto an oriented flat plate is obtained
from Eq. (16) by multiplying the integrand of Eq. (16) by the area
the flat plate presents to meteoroids. The presented area of the flat
plate is equal to the product of the area A with the cosine of the angle
ft the meteoroid makes with respect to the plate normal. Therefore,
the mean number of impacts onto an oriented flat plate is/vJo Jv'b 0'

(17)

The notation [ ]+ denotes that only impacts on the upside of the
plate are counted, i.e., whenever cos ft < 0, set the quantity in square
brackets equal to zero.

Equation (17) can be used to calculate the ratio of the flux on a
forward-facing flat plate to the flux on an aft-facing flat plate, by
taking the ratio of Eq. (17) evaluated from 0 to n/2 (instead of from 0
to n) to Eq. (17) evaluated from n/2 to n. Zook3 obtained a ratio 7.2
for a flat plate at 460-km altitude and g(v) given by Eq. (1), whereas
a ratio 9.04 was obtained with Eq. (17), when Earth shadowing was
taken into account.
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Nomenclature
= drag coefficient, where CDt = CDa + CDr
= lift coefficient, where CLt = CLa + CDr

= heat constant = 1.83 x I(r8fl~1/2(l - h'w/h'0),
(J/cm2)/(kg/m3)5 (m3/.?3), for stagnation point, where Rn
is in meters, h'w = enthalpy at wall, and h'Q = total
enthalpy

= drag, where Dt = Da + Dr, N
= aerodynamic-liftr-to-aerodynamic-drag ratio,

T / T\ /^« I /~1L3/L>a = ̂ La/^Da
= maximum E, (Lfl/Da)max = ClJC*Da
= function of the aerodynamic control,

CD
CL

D
E

E*
fa

ft = function of the total aerodynamic control, where

g
h
/sp
L
M
m
Q
r

S
Tt
Tn
t

acceleration due to gravity, m/s2

geometric altitude from the earth's equator, km
specific impulse, s
lift, where Lt = La + Lr, N
Mach number
mass of the vehicle at any time, kg
heat load per unit area, kJ/cm2

position of the vehicle's mass center with respect to the
earth's center, m or km
vehicle aerodynamic reference area, m2

total (or gross) thrust, N
net thrust, Tt -Z)r,N
time, s
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V = magnitude of velocity of the vehicle's center of mass with
respect to a noninertial reference frame fixed in and
rotating with the earth, m/s

W = weight for the vehicle, N
a = angle of attack between Tt and V vectors
ft = reciprocal of the scale height ̂  0,000147 nr1

y = flight-path angle of the vehicle, rad
p = atmospheric air density, kg/m3

9 = longitudinal position of the vehicle measured from the
reference axis X, in the equatorial plane, positive
eastward, rad

Subscripts
a = aerodynamic, without the effect of ram drag
an = analytical
c = constant
/ = final
i = initial
nu = numerical
r = due to ram drag
re = constant reference value
t = total, including the effect of ram drag
0 = at earth surface

Superscript
* = value at E*

Introduction

THIS paper presents an extension to the work in Ref. 1, which
deals with re-entry problems with only one control, i.e.,

aerodynamic lift modulation. Here, additional equations (relation
between thrust and mass expulsion rate) and two controls (thrust
and lift) are introduced.

This study addresses three cases of constant-constraint pairs: con-
stant acceleration with constant rate of climb (case 1), constant ac-
celeration with constant flight-path angle (case 2), and constant ac-
celeration with constant dynamic pressure (case 3). For these cases,
analytical closed-form solutions are derived for two nonlinear feed-
back controls, which are necessary to transfer a vehicle from one
specified state to another. The solutions obtained are unique for a
given set of constraints. Also derived are equations for the heat rate
with the heat load for hypersonic speed (some similar heat results
are reported in Refs. 2 and 3) and the integration of most state
variables. The resulting equations apply to any flight vehicle [e.g.,
airplane, rocket, and aerospace plane (including vehicles with high
aerodynamic-lift-to-aerodynamic-drag ratio such as wave riders)].
The results of this study will provide insights into the design and
operation of flight vehicles. It also defines additional work needed
in the area of trajectory and control.

Model Equation
The vehicle is modeled as a variable point mass with parabolic

drag polar (plus a small addition to the lift due to the effect of the
ram ah* at hypersonic speed) and variable lift and thrust, as described
in Refs. 4-6, but with consideration for high angle of attack. The
earth is assumed to be spherical and nonrotating with an exponential
atmosphere. The trajectory is taken in the equatorial plane. With
the above assumptions the equations that describe the system are
given by

dO V
— = —cosydt r

dr
— = V sin Y = re

—

dV
dt

- Dt

m
- g sin x

Lt Ttsma V2

V — - = — + ———— — g cos y H- — cos ydt m m r
dy

(1)

(2)

(3)

(4)

dm

dQ
dt

Tt

for hypersonic speed, and

(5)

(6)

(7)

(8)

We should note that Eqs. (5) and (7) are not coupled with Eqs. (1-4)
and (6); also Eqs. (1) and (2) can replace each other.

Introducing the dimensionless variables:

(9a)

V2

m
—w0

<9b)

« = ̂ = = rr (9c)

(9d)

(9e)

where tc = Vro/£o and C\ is a dimensionless arbitrary constant,
used for pure computational numerical stability. The following di-
mensionless variables are also defined: a = dV/dt/gQ, which is the
component of the dimensionless acceleration in the direction of the
vehicle velocity; y = y/yre, 0 = 0/0re, re = rc/VC9 where the
constant values for yre and 0re can be chosen arbitrarily; q = q/qie,
where qK = €3 = pQV2/2CiCla in atmospheres or N/m2; and
g = Q/Qre, where Qre is a reference constant, which can be taken
to be equal to the shuttle re-entry maximum value ̂ 50 kJ/cm2.

The dimensionless controls are

** = §r (9f>

A r =r f lA f l (9g)

A, = Afl + Ar (9h)

Ttr< = ̂  (9i)

_ 7;-z>r
Wo

where t/i is a dimensionless optimized coefficient for lift due to the
component of total thrust control in the direction of lift, A/ is the total
dimensionless aerodynamic control, and rn is the net dimensionless
thrust control. At hypersonic speeds Dr can be chosen as a function

Applying the dimensionless variables y, 0, re, q, in (9a-9j) to
Eqs. (1-8) yields

df / f c \ . .
-^ =r[ — ] = wsiny
dt Vr0/

drj
— = (fjtc) = -ftr0rju sin y
dt

(10)

(11)
dw C4r0
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where €2 is the total characteristic constant length of the vehicle (in
meters) and €4 = poSC2/mQ is a dimensionless constant, and

df

1 f C4 cosy

df 'sp

Gre

(13)

(14)

(15)

(16)

(17)

where €5 = jL *s a constant with units of (kg/m3)1/2

Analytical Approach
For given dXj/dt = X, = fj(X, C, 0, j = 1, 2, . . . , n where

X is the state vector of the nonlinear system and C € Cm/ is the
control vector. To find the control vector such that the constraints
®i(X, C) = constant, t = 1, 2, . . . , /?', p' < n and p' < w', are
satisfied, if the system is controllable, then

(18)

where n is the number of equations, and mr is the number of con-
trols. This, in general, generates, a trajectory that is not unique. The
selection of the controls will be based on the mission desirability
and physical constraints (e.g., w/jmin < w/ < w/,max).

Consider as an example case 1, with Eqs. (1-8) or (10-17) and
two constant constraints—constant acceleration 4>! with constant
rate of climb 4>2, (#0 rcc):

d« _ £0«
1 ~ d/ ~ Ve

= rc = ycw sin y =

(19)

(20)

To obtain the controls, apply Eq. (18) to Eq. (20) and substitute
for u from Eq. (19) and y from Eq. (13); then, solving for X,, the fol-
lowing closed-form expression for the nonlinear feedback controls
is obtained:

/n0

go cos y _ Vcu2 cos y \
+ Vcr2 ~ ~ r ^ J

Equations (12) and (19) yield

T, =
J

(21)

(22)

After replacing r0 by Vcfc in Eq. (16) and changing the independent
variable from f to u with the use of Eqs. (19) and (16), the heat rate
becomes

^2 = (<±Q\ f df \ =
du \ d f j \ d u )

(23)

This equation cannot be integrated unless we express r\ as a function
of u. This can be done as follows: From Eqs. (11) and (20), we have

dn
-i = -(pr)rcc)tcdt

(24)

Changing the independent variable in Eq. (24) from f to u with the
use of Eq. (19) gives

du d f d u gQac

Rearranging this equation and integrating yields

( -£^(M - ii,) ) =
\ gO^c /

(25)

This equation can be used to replace r\ as a function of u in Eq. (23),
which after rearrangement gives

dg
fir

(26)

The integration of Eq. (26) yields the dimensionless heat load:

+ 3(C7M/)2 + 6(C7M/) + 3 !] 4- ^-C7M' [(C7W/)3

(27)

where the constants are C& = CQCsV^/gQac (same units as CG),
C7 = pvcrcc/2goac (dimensionless), and Cg = C^'5 ]eClUi (same
units as

Integration and Approximation of State Variables
From Eqsx(19) and (20), we have dr/du = rccVc/r0gQac =

rcc/Vcac = fcc/aC9 which by integration gives

(u _ Ui)9 or = rt + | — (« - i
L a^

(28)

Integration of Eq. (19) gives

u = m + I -^ U, or M = M, .+ act (29)

From Eqs. (11) and (19), we have

dw gQdc/Vc

which by integration gives

rj = 7/,-exp —— ̂ ^(M - ut) ,
L ^o«c J

or

(30)
f Pr0rcc t "1j = ^exp ———— (w - ut)I ac J

From Eq. (20), we have sin y = rcc/ Vcu. This yields

sirTl(rcc/u)-•^Gs)- or y =
Xre

(3D

First-order approximations of 11 and 9 for cases 1-3, give

IJL & [Jii — amt, or

0 & 9t + amf, or

: & - amtct (32)

0. + ̂ £1 (33)
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Fig. 1 Comparison between a) (A/)an of case 1-3 and (A/)nu, adapted from Refs. 5 and 6 for small a; b) (f)an of cases 1-3 and (A,)nu adapted from
Refs. 5 and 6 for small a; and c) contours for the analytical heat load Qan in the range 0-500 kJ/cm2, on the plane of the parameters a and q (case 3),
adapted from Ref. 5; the point A at a = 0.4g and q = 0.2 atm represents the results of Ref. 2.

Also, we can specify the time or choose it for first-order approx-
imation as a function of re, and we can choose (for example, in
the ascent of an aerospace plane to orbit) am = 0.0005 s"1. This
is justified in Ref. 5 by integrating the general equations of mo-
tion. Thus, for a specified time, Eqs. (21-33) give X, = X,(ac, rc),
rt = Tt(ac, rec), and Qt = Qt(ac, rcc).

We now consider case 2—constant acceleration 4>i with constant
flight-path angle <J>2, (ac, yc):

•-S-S*

OTQ/2CiAtcosycW
S \ M )\

rt sin a

(34)

(35)

(36)

(37)

22<

where the constants are Cg = ft V^sin Yc)/(4goac) (dimensionless)
andCio = Cafy?'5^9"1 (same units as Cg), and the heat-rate equation
is given by Eq. (16) after replacing TO by Vctc:

2ac

r\ = jj.exp[-
u = ut + act

y = yc — constant

(39)

(40)

(41)

(42)

Finally we consider case 3—constant acceleration <I>i with con-
stant dynamic pressure, $\(ac, qc):

*i = 17 = 17ac> <*>2 = q = C3rju2 = qc (43)
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__ m0 / 2Ci C3/A / 2gQac tan y gQrt sin a
'~ S \p<*Vcqc )\ Vc Vc»

go cosy Vcqccosy\
(44)

for qc

T, =

Qi CnCsV4 I q (u*f — «?\
= ___ «j_ _————t/TT 1 ——^—— I

2re GregO^c V C3 \ 3 /
(46)

We have used Eq. (16) for the heat rate, replacing ro?;0'5 by
c. Finally,

(47)

(48)

(49)

(50)A sin"1 (2ac/pr0u2)

Results
The results for the controls, heats, and state variables of cases

1-3 are given in Eqs. (16), (21-22), (27-33), (36-42), and (44-50).
Some of the results from Refs. 5 and 6 for small angle of attack are
plotted in Fig. 1 to show how well the present results agree with
the numerical solutions. These results are for the aerospace plane
ascending to orbit. In Fig. la we have the aerodynamic controls Xnu
and Xan for the numerical solution and the analytical solution of cases
1-3, respectively. This shows Xnu and A.̂  are in close agreement

(e.g., 0.55 < A. < 1.1 for 0.2 < u < 0.9). In Fig. Ib, we have
the total thrust controls rnu and r^ for the numerical solution and
the analytical solution of cases 1-3, respectively. This figure shows
rnu and T^ are almost the same. Also, the comparison of the heat-
load contours on the q-a plane in Fig. Ic at point A (i.e., q =
0.2 atm and a = 0.4g, where Q « 400(kJ/cm2) is in agreement
with the results of Ref. 2. Moreover, the results in Fig. Ic are more
general than the results in Ref. 2, since the whole mapping of Q
in the q-a plane is considered. Also, these results are close to the
numerical results for the general system in Ref. 5, where Q % 400
kJ/cm2.

Discussion and Conclusions
This paper has presented new closed-form analytical solutions

for the nonlinear aerodynamic and thrust controls in feedback form
for high angle of attack. Three cases were presented, each for a
given pair of constraints (i.e., constant acceleration with constant
rate of climb, constant acceleration with constant flight-path angle,
and constant acceleration with constant dynamic pressure). Also
presented where analytical solutions for heat rate and heat load (for
hypersonic flight) and most of the state variables, comparisons with
numerical results from Refs. 5 and 6 showed good agreement.

The results of the three cases presented herein can be used during
various intervals of the trajectory to simulate and approximate the
more general case.
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