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Expressing Egs. (7) and (8) in the polar coordinates defined in Fig. 1
gives

veosy = v cos P — ®
vsiny cos¢ = v’'siny’ cos¢’ 10)

The azimuthal angles are unchanged by the coordinate transforma-
tion, so ¢ = ¢'. Therefore Eq. (10) reduces to,

vsiny = v siny’ an

To solve for V (¢, v) square both Eqs. (9) and (11), add the
results and take the square root to obtain

/ 1
v=(v2+v? - 2v'n,cosy’)? 12)
To solve for V/(y’, v), note that Eq. (12) squared is a quadratic
equation for v’ with the solution

v =vcosy +y/ oo ¥~ F-vD)  (13)

To solve for W(y’, v’), divide Eq. (9) by v and take the arccosine
to get

¥ = cos™} (—————v COSZ’ _ v:> (14)

where the v in the denominator is given by Eq. (12).

Finally, the Jacobian is solved for by substituting Eqs. (14) and
(12) into Eq. (6) to obtain
vl
v
With the above results, Eq. (5) can be further simplified. Replace

the Jacobian with Eq..(15) and A () with (sin ¢)/2 and substitute
Eqg. (11) into the result to obtain

V'[¥,vmax] ( ' )3
A At
[ L, (v

,. siny’
b7

J = (15)

x g(Viy', dv’ dy’ (16)

Equation (16) normalized by F,A At is the velocity focusing
factor in orbiting spacecraft coordinates. That factor was numeri-
cally integrated and compared with Kessler’s equation for the ve-
locity focusing factor in stationary spacecraft coordinates, which
is repeated as Eq. (2) in this paper. Agreement was obtained to
within the tolerance set for the numerical integrations (six signif-
icant figures for the smallest tolerance calculated), confirming the
accuracy of the coordinate transformations and the Jacobian derived
here.

The mean number of impacts onto an oriented flat plate is obtained
from Eq. (16) by multiplying the integrand of Eq. (16) by the area
the flat plate presents to meteoroids. The presented area of the flat
plate is equal to the product of the area A with the cosine of the angle
B the meteoroid makes with respect to the plate normal. Therefore,
the mean number of impacts onto an oriented flat plate is

/V "[¥vmax) ( v )3
—— ) Alcos B1* At
-/ V't vmin] Viy', vl

xg(VIy',v'D 21”

The notation [ 1* denotes that only impacts on the upside of the
plate are counted, i.e., whenever cos 8 < 0, set the quantity in square
brackets equal to zero.

Equation (17) can be used to calculate the ratio of the flux on a
forward-facing flat plate to the flux on an aft-facing flat plate, by
taking the ratio of Eq. (17) evaluated from 0 to r /2 (instead of from 0
to 77) to Eq. (17) evaluated from 7 /2 to . Zook® obtained a ratio 7.2
for a flat plate at 460-km altitude and g(v) given by Eq. (1), whereas
aratio 9.04 was obtained with Eq. (17), when Earth shadowing was
taken into account.

dv’ dy’ (17
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Analytical Solution
for Controls, Heats, and States
of Flight Trajectories
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King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia

Nomenclature

Cp = drag coefficient, where Cp, = Cp, + Cp,

C, = lift coefficient, where C;, = C,, ++ Cp,

Co = heat constant = 1.83 x 108 R, V21 — Ky / Y,
(J/cmz)/(kg/m3) (m3/5%), for stagnation point, where R,
is in meters, 4}, = enthalpy at wall, and kg = total
enthalpy

D = drag, where D, = D, + D,,N

E = aerodynamic-lift-to-aerodynamic-drag ratio,
L3/D = Cy,/Cp,

E*  =maximum E, (L,/D,)mex = C} /Ch,

f. = function of the aerodynamic control
Cp,/C}, =14 A%/2E*
ft = function of the total aerodynamic control, where

fi=f+ fr=1+A22E"

= acceleration due to gravity, m/s?

= geometric altitude from the earth’s equator, km

= specific impulse, s

= lift, where L, = L, + L,, N

= Mach number

= mass of the vehicle at any time, kg

= heat load per unit area, kJ/cm®

= position of the vehicle’s mass center with respect to the
earth’s center, m or km

= vehicle aerodynamic reference area, m?

= total (or gross) thrust, N

T, = net thrust, ; — D,, N

t = time, §

~ 08 ghé\:‘oﬁ
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V= magnitude of velocity of the vehicle’s center of mass with
respect to a noninertial reference frame fixed in and
‘rotating with the earth, m/s
W = weight for the vehicle, N

o = angle of attack between 7; and V vectors

B = reciprocal of the scale height ~ 0, 000147 m™!

4 = flight-path angle of the vehicle, rad

p = atmospheric air density, kg/m®

0 = longitudinal position of the vehicle measured from the
reference axis X, in the equatorial plane, positive
eastward, rad

Subscripts

a = aerodynamic, without the effect of ram drag

an = analytical

c = constant

f = final

i = initial

nu = numerical

r = due to ram drag

Ic = constant reference value

t = total, including the effect of ram drag

0 = at earth surface

Superscript

* = value at E*

Introduction

HIS paper presents an extension to the work in Ref. 1, which

deals with re-entry problems with only one control, i.e.,
aerodynamic lift modulation. Here, additional equations (relation
between thrust and mass expulsion rate) and two controls (thrust
and lift) are introduced.

This study addresses three cases of constant-constraint pairs: con-
stant acceleration with constant rate of climb (case 1), constant ac-
celeration with constant flight-path angle (case 2), and constant ac-
celeration with constant dynamic pressure (case 3). For these cases,
analytical closed-form solutions are derived for two nonlinear feed-
back controls, which are necessary to transfer a vehicle from one
specified state to another. The solutions obtained are unique for a
given set of constraints. Also derived are equations for the heat rate
with the heat load for hypersonic speed (some similar heat results
are reported in Refs. 2 and 3) and the integration of most state
variables. The resulting equations apply to any flight vehicle [e.g.,
airplane, rocket, and aerospace plane (including vehicles with high
aerodynamic-lift-to-aerodynamic-drag ratio such as wave riders)).
The results of this study will provide insights into the design and
operation of flight vehicles. It also defines additional work needed
in the area of trajectory and control.

Model Equation

The vehicle is modeled as a variable point mass with parabolic
drag polar (plus a small addition to the lift due to the effect of the
ram air at hypersonic speed) and variable lift and thrust, as described
in Refs. 4-6, but with consideration for high angle of attack. The
earth is assumed to be spherical and nonrotating with an exponential
atmosphere. The trajectory is taken in the equatorial plane. With
the above assumptions the equations that describe the system are
given by

dr V sin 1
—_—— 1 =r
o y=rc 1
d
= =~pBVsiny o)
T, -~ D
d_V=—,cosa ! —gsiny 3
dr m
L T, si v?
ng—/-:——'+——'—§1—‘3—(—¥--gcosy+—cosy (€]
dt m r

o v
T 7 cosy 5)
dm = L (6)
dr Ispgo
ag
= =C 05v3
a op )]
for hypersonic speed, and
g =3pV? ®)

‘We should note that Egs. (5) and (7) are not coupled with Egs. (1-4)
and (6); also Eqgs. (1) and (2) can replace each other.
Introducing the dimensionless variables:

F=l (9a)

To
n=CCl, (ﬁ) (9b)

Lo
vy

U= = — 90
e . .

m
H=— (9d)

mo
Pt %)
= - e

where 1, = /ry/go and C, is a dimensionless arbitrary constant,
used for pure computational numerical stability. The following di-
mensionless variables are also defined: a = dV /dt /g, which is the
component of the dimensionless acceleration in the direction of the
vehicle velocity; ¥ = ¥/, 0 = 8/0, r¢ = rc/V,, where the
constant values for y. and 6., can be chosen arbitrarily; § = q/gye,
where ¢ = C3 = poV2?/2C,C;  in atmospheres or N/m?; and.
Q = Q/ 0, where Q is areference constant, which can be taken
to be equal to the shuttle re-entry maximum value =50 kJ/cm?.
The dimensionless controls are

CL

A= a
“=Cr N
A =dih, (9g)
A= Ag+ A (9h)
T = il (91)

T W, _

T; - Dr .
T We &)

where d, is a dimensionless optimized coefficient for lift due to the
component of total thrust control in the direction of lift, A, is the total
dimensionless aerodynamic control, and t, is the net dimensionless
thrust control. At hypersonic speeds D, can be chosen as a function
of T;.

Applying the dimensionless variables 7, 9, 7¢, §, in (9a-9j) 10
Eqgs. (1-8) yields

d7 r'(") i sin 10)
—_ = —— =Uu
dt o £

dr]_
df

du . T, cos ( Curo ) (nuz) siny
— = Ul, = —_ — ) - — 12
@i " [ u 206/ w) = | P

(t;) = —Pronusiny amn
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where C; is the total characteristic constant length of the vehicle (in
meters) and Cy = poSC2/my is a dimensionless constant, and

d)?__(tc)
i~ "\

1| Carg (nu) T, sina cosy u
- [ (2 () 28
Yee [2C1C2 "\ u nuu 2u + 7 cosy

(13)
dé (1 1 /u
543 o)
& o o \7 cosy 14
du 7
— = fit, = ~l.— 15
it I, 15)
d A R, C,CsV2ron®Su3
ooy 16)
dt Ore Ore
§=m an
where Cs = . /po/ C>C} is a constant with units of (kg/m?)!/2
Analytlcal Approach
For given dX;/dt = X = fiX,C,0), j=1,2,. nwhere

X is the state vector of the nonlinear system and C € C"' is the
control vector. To find the control vector such that the constraints
®,(X,C) = constant, £ = 1,2,...,p', p’ <nand p’ < m/, are
satisfied, if the system is controllable, then

[}
i ‘f,(XC) 0 (18)

j—l

where n is the number of equations, and m’ is the number of con-
trols. This, in general, generates, a trajectory that is not unique. The
selection of the controls will be based on the mission desirability
and physical constraints (€.g., ¥ f,min < #f < U max)-

Consider as an example case 1, with Egs. (1-8) or (10~17) and
two constant constraints—constant acceleration ®, with constant
rate of climb &,, (a., rc.):

du 8golc
P = — =
1= V. 19
b, =rc=Vusiny =rc, 0)

To obtain the controls, apply Eq. (18) to Eq. (20) and substitute
for i from Eq. (19) and y from Eq. (13); then, solving for A,, the fol-
lowing closed-form expression for the nonlinear feedback controls
is obtained:

s = mo 2C 1 » _ oactany  goT, sina
' S p0Vc77u2 Vc Vcl"

gocosy V.ulcosy
t5E 3 ) 2D
[4

ror

Equations (12) and (19) yield

'=

2 2 s
[uac N (i) poVESiGms® smy] o)

cos o my 2C1 8o 72

After replacing ry by V., in Eq. (16) and changing the independent
variable from 7 to # with the use of Egs. (19) and (16), the heat rate
becomes
a0  (dQ\(df _ CoCsVin"Su?
du ~ \ df du

Oregoa @

This equation cannot be integrated unless we express 7 as a function
of u. This can be done as follows: From Eqs. (11) and (20), we have

dn _ _
E - (ﬂnrcc)tc (24)

Changing the independent variable in Eq. (24) from 7 to u with the
use of Eq. (19) gives

dp _ (dn df _ _BVeree
du ~ \ df J\du goa.
Rearranging this equation and integrating yields

n= mexp< BVrre,

804,

(u —u; )) = n(u) (25)

This equation can be used to replace 7 as a function of  in Eq. (23),
which after rearrangement gives

do _ Cpulet™
du.” O
The integration of Eq. (26) yields the dimensionless heat load:

A~ O 1 (C —Cou
0=+ g(&) <[ -oem

+3(Crup)? +6(Crug) +31] + e [(Cour)?

(26)

+3(Coui)? + 6(Cour) +31] @7)

where the constants are C¢ = Cg C5V /8oa. (same units as Cy),
= BV.rc./2goa. (dimensionless), and Cs = Csn?>e™ (same
units as Cp).

Integration and Approximation of State Variables
From Eqs;\(19) and (20), we have df /du = rc.V./rogoa. =
rc./Vea, = rc./a., which by integration gives

r=r,-+(£cl/5)(u—u,-), or ?=f,-+|iraﬁ(u—u)i| (28)

8god. (4

Integration of Eq. (19) gives

=i+ (a:/ac)t, or u=u; +af 29)
From Egs. (11) and (19), we have
dn _ Brre.
du gOac/ V.

which by integration gives

VC C
n= meXP[~u(u - u:)], or

804,

n=meXP[ Brore. —(u —u)]

From Eq. (20), we have siny = rc./ V.u. This yields

(30

- _l -
y =sin™! (rcc ), or p= sin”_(rée/u) 31)
V.u Yre

First-order approximations of y and @ for cases 1-3, give

W = ant, OF W™ p; — Gutd 32

A A tt
O =~ 6; + ant, or 9%9,-+a"'
Ore

(33
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Fig. 1 Comparison between a) (A)an of case 1-3 and (A;)nu, adapted from Refs. 5 and 6 for small a, b) (7)an of cases 1-3 and (A\;)y, adapted from
Refs. 5 and 6 for small o; and c) contours for the analytical heat load Q,, in the range 0-500 kJ/em?, on the plane of the parameters a and g (case 3),

adapted from Ref. 5; the point A ata = 0.4gand g =

Also, we can specify the time or choose it for first-order approx-
imation as a function of rc, and we can choose (for example, in
the ascent of an aerospace plane to orbit) a,, = 0.0005 s~1. This
is justified in Ref. 5 by integrating the general equations of mo-
tion. Thus, for a specified time, Eqs. (21-33) give A, = A, (a., o),
T, = 1(a., re), and O, = Qy(ac, re.). v

We now consider case 2—constant acceleration &, with constant
flight-path angle ®,, (a.; y.):

=t _&
(Dl = dz = Vcac (34)
. d
5 = ™Mo (2Ciucosy. using g 1
T s Pon ro COS ycl"'uz Vc2u2;2 rof
(36)
1 S VZE(O 2 .
5= pac + (__) ooV fi(h)nu ;Lsmy .
cos mg 2C1go

0.2 atm represents the results of Ref. 2.

0= gr: ('Q;)"C::—O(zfcg\/czg)

where the constants are Co=§ Vf (sin y.)/(4goa.) (dimensionless)
and Cyo = Cen>¢™* (same units as Cp), and the heat-rate equation
is given by Eq. (16) after replacing ry by V,z.:

(38)

siny,

Pefid = W —ul) (39)
3rg si 2 —y?
n= ,,iexp[_(w)"__ﬂ] “0)
a, 2
u=u +ail 41)
y =y, — constant 42)

Finally we consider case 3—constant acceleration ®; with con-
stant dynamic pressure, $,(a,, g.):

du
(D1=-&t-=

8o
—ac,

7 43)

Oy =q=Conui =¢q,
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r_n_0(2C1C3u,) ( _ 2goactany  got;sina

a S pOchc V. Vc‘u
“4
gocosy  Veg.cosy
V,_fz C3I'()7]f )
forg. #0,
— S\ pofi(r)V2q, psiny
e (mo) 2C1Cs80 72 @5
A Qi | CoCsVE [q. (wy—u
==t — /= = 46
2 e Qregoac Y Cs 3 (46)
fora. # 0.

We have used Eq. (16) for the heat rate, replacing ron®* by
V.+/q./Cst.. Finally,

2
Fmfit o &v(i) @7
Bro u;
U; 2
n=m (—) (48)
u .
S 8odc -
u=u; + ( V. )tct 49)
sin™! (2a,/ Brou?
= ___(_____"_l (50)
Yee
Results

The results for the controls, heats, and state variables of cases
1-3 are given in Egs. (16), (21-22), (27-33), (36—42), and (44-50).
Some of the results from Refs. 5 and 6 for small angle of attack are
plotted in Fig. 1 to show how well the present results agree with
the numerical solutions. These results are for the aerospace plane
ascending to orbit. In Fig. 1a we have the aerodynamic controls Ay,
and A, for the numerical solution and the analytical solution of cases
1-3, respectively. This shows A, and A, are in close agreement

(e.g., 055 < A < 11lfor0.2 < u < 0.9). In Fig. 1b, we have
the total thrust controls 7, and 7,, for the numerical solution and
the analytical solution of cases 1-3, respectively. This figure shows
Ty and T,, are almost the same. Also, the comparison of the heat-
load contours on the g-a plane in Fig. 1c at point A (ie, g =
0.2 atm and a = 0.4g, where Q ~ 400(kJ/cm?) is in agreement
with the results of Ref. 2. Moreover, the results in Fig. 1c are more
general than the results in Ref. 2, since the whole mapping of Q
in the g-a plane is considered. Also, these results are close to the
numerical results for the general system in Ref. 5, where Q ~ 400
kl/em?.

Discussion and Conclusions

This paper has presented new closed-form analytical solutions
for the nonlinear aerodynamic and thrust controls in feedback form
for high angle of attack. Three cases were presented, each for a
given pair of constraints (i.e., constant acceleration with constant
rate of climb, constant acceleration with constant flight-path angle,
and constant acceleration with constant dynamic pressure). Also
presented where analytical solutions for heat rate and heat load (for
hypersonic flight) and most of the state variables. comparisons with
numerical results from Refs. 5 and 6 showed good agreement.

The results of the three cases presented herein can be used during
various intervals of the trajectory to simulate and approximate the
more general case.
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